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We study a traveling salesman problem where the path is optimized with a cost function that includes its
length L as well as a certain measureC of its distance from the geometrical center of the graph. Using
simulated annealingsSAd we show that such a problem has a transition point that separates two phases
differing in the scaling behavior ofL andC, in efficiency of SA, and in the shape of minimal paths.
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In the traveling salesman problemsTSPd, which is per-
haps the most famous combinatorial optimization problem,
one has to find the shortest path that joins a given set ofN
points. In addition to pure academic interest the TSP appears
naturally in some transportation applications or production
and testing of integrated circuitsf1g. This easy to formulate
problem is, however, very difficult to solve. Actually the TSP
is known to be NPsnondeterministic polynomiald–complete
f2g and it is believed that there is no algorithm that can find
a solution in time increasing as a finite order polynomial in
N. Although advanced algorithms can find exact solutions of
the TSP for quite large values ofN, these algorithms are
usually dedicated only to this particular task. Consequently,
they are not suitable for more general versions of the TSP
nor for some other numerically difficult optimization prob-
lems. It is thus desirable to develop approximate but more
versatile methods such as genetic programmingf3g, simu-
lated annealingsSAd f4g, or extremal optimizationf5g, and
for such a purpose the TSP appears to be an excellent testing
ground.

Another NP-complete problem that is of considerable in-
terest is the so-called satisfiability problem where one exam-
ines conditions needed to satisfy certain Boolean formulas
f6g. Recently, it was shown that there is a phase transition in
this class of problems that separates two regimes: easy and
hard to satisfy. It turns out that such problems are most dif-
ficult to examine right at the transition point and computa-
tional complexity decreases when one moves away from the
transition pointf7g. A related phase transition was found in a
certain version of the TSP where distances between points
are randomly drawn integer numbersh1,2,… ,kj. In such a
case the time needed to find the minimal solution using a
branch-and-bound algorithm dramatically increases whenk
exceeds a certain threshold valuef8g. Methods used to estab-
lish these results very often originate from statistical me-
chanics providing thus an interesting multidisciplinary
bridge f9g. Although some other examples of connections
between statistical mechanics and computational complexity
were already examinedf10g, further explorations of this sub-
ject would be very desirable.

In the present paper we examine a certain version of the
TSP where one requires the minimization ofE=L+rC,
whereL is the total length of a path,C is the sum of dis-
tances of middle points of links from the geometrical center
of the graph, andr is a control parameter of the modelsof

course,r =0 corresponds to the original TSPd. Using simu-
lated annealing we show that upon increasingr the model
undergoes a phase transition from theLs-dominatedd phase
ssmall rd to theCs-dominatedd phaseslargerd. In theL phase
we find L,N1/2 and C,N, while in theC phase a reverse
scaling holds withL,N and C,N1/2. Moreover, the mini-
mal paths in these two phases have a qualitatively different
shape. What is also interesting is the change of efficiency of
SA. The r-dependent optimization problem that we study
does not seem to be easier than ther =0 case, and we expect
that for anyr our problem is also NP-complete. Neverthe-
less, in theC phase SA has a much better efficiency than in
the L phase at least with respect to finding nearly minimal
paths. Such an effect might be related to a change of the
energy landscape of the problem, but further studies would
be needed to verify such a claim.

To define our problem, let us considerN points distributed
in a unit square of a Euclidean plane. Denoting the coordi-
nates of theith point assxi ,yid, we have
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k=1

N

Îsxik
− xik+1

d2 + syik
− yik+1

d2, s1d

C =
1

2o
i=1

N

Îsxik
+ xik+1

− 1d2 + syik
+ yik+1

− 1d2, s2d

where we assume that in a given path, points appear in the
orderi1, i2,… , iN, i1 andiN+1= i1. Next, we introduce the cost
function E=L+rC. We cannot provide an immediate appli-
cation of such a problem, but one can imagine that in some
transportation tasks staying during the tour close tosor far
fromd the center might be of some importance. Such an ad-
ditional condition might be particularly relevant in war areas
where staying near a military base is important for safety
reasons. Another application might be a “just-in-time vehicle
routing problem,” in which truck drivers might be called to
the center depot at intermediate times in order to get further
goods that have to be delivered to the customers. It is easy to
realize that minimization ofL usually does not minimizeC
and competition of these two terms might lead to some in-
teresting effects.
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To find a path that minimizesE we use a standard simu-
lated annealing technique. For a given configuration, we pro-
duce a trial configuration by exchanging randomly the posi-
tions of two points. Such a move is accepted with a
probability mins1,e−dE/Td wheredE is the energy difference
between a trial and the initial configuration, andT is a ficti-
tious temperature. During simulations, the temperatureT is
reduced to zero linearly in timet according toTstd=1−ct
wherec is the cooling rate and the unit of time is defined as
the attempt to makeN moves. For a small cooling ratec such
a method finds a path of a lowsand for smallN perhaps even
the lowestd value of E. To check that the properties of our
model are not the consequence of the numerical method, we
did additional runs using the so-calledLIN-2-OPT moves that
cut a configuration in two pieces, turn the direction of one
piece around, and reconnectf11g. Such moves are known to
be more effective than exchanges of two pointsf12g. Both
methods, however, yield essentially the same behavior of our
model with respect to, e.g., the location of the transition
point or N dependence ofL and C. Unless specified other-
wise, the results described below are obtained with the use of
the exchange algorithm.

In Fig. 1 we show the lengthL of a minimal path as a
function of r averaged over 1000 distributions ofN=100
points. One can see thatL is a slowly increasing function of
r except aroundr =2.0 where the increase is more abrupt.
Around the same value ofr there is a maximum of the vari-
ance ofL and an abrupt change ofC. These results suggest
that a certain phase transition takes place aroundr =2.

A visual indication of a qualitative change aroundr
,2.0 is shown in Fig. 2. For larger sC-dominated phased,
paths that minimizeE have large lengthL but many intersec-
tions around the centers1/2,1/2d yield a small value ofC.
For smallr sL-dominated phased typical minimal paths have
a much different shape. They have only few intersections and
are more or less uniformly distributed in a unit square.

That in our problem there are two phases separated by a
transition point around,2.0 is also seen in Fig. 3 which
presents theN dependence ofL and C. These results show
that in the L phase sr =1.9d L,N1/2 and C,N. Conse-
quently, the cost functionE is dominated by the distanceC.
Let us notice that the scalingL,N1/2 was already proven for
the original TSPsr =0d f13g. As for the second relationsC
,Nd, there is a simple argument that justifies it. Indeed,
since in theL phase the minimal path is relatively uniformly
distributed in the unit square one can assume that central
points of links are also almost uniformly distributed. It
means that there is a positivesandN independent in the limit
N→`d average distance of the central point froms1/2,1/2d
and thenC,N easily followsf14g.

In theC phase we findL,N andC,N1/2. Such relations
can be deduced from the structure of a typical minimal path
as seen in Fig. 2. In theC phase points that are approxi-
mately opposite with respect tos1/2,1/2d are pairwise
linked. It means that there is a finitesN-independentd length
of such a link and thusL,N follows. The relationC,ÎN is
more subtle and we can justify it only approximately. In the
following we argue that for a minimal path the typical dis-
tancec̄ of the center of a link tos1/2,1/2d scales as 1/ÎN
from which the relationC,ÎN easily follows. To show that
c̄,1/ÎN let us consider, e.g., a pointsx1,y1d and ask what
is the minimum cm of distances of the center of a link
between sx1,y1d and any of the remainingN−1 points.
It means that we have to find the minimum of

FIG. 1. The lengthL of the minimal path as a function ofr for
N=100. The left inset shows the square root of its varianceÎs as a
function of r. The right inset shows the total distance from the
centerC as a function ofr.

FIG. 2. Typical shapes of nearly minimal
paths forsfrom left to rightd r =0.0, 2.0, and 2.5.
Calculations were made forN=100 andc=10−6.

FIG. 3. Size dependence ofL and C for r =1.9, 2.0, and 2.5.
Calculations made forc=10−4,10−5, and 10−6 were extrapolated to
c=0 and the average was made over 1000 independent samples.
Continuous and dotted lines have slope 1.0 and 0.5, respectively.
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Îsx1+xi −1d2+sy1+yi −1d2 where i =2,3,… ,N. Let us no-

tice that in astwo-dimensionald unit squareN−1 points set
the characteristic distance between points as 1/ÎN. Thus one
can expect that in a circle of radius 1/ÎN that is opposite
fwith respect tos1/2,1/2dg to the pointsx1,y1d there is ap-
proximately one of theseN−1 pointsssee Fig. 4d. A link with
such a point has a center that is inside a circle around
s1/2,1/2d and has a twice smaller radiussbut still it is of the
order of 1/ÎNd. Consequently, the smallest distancecm of a
center of link to the points1/2,1/2d should scale as 1/ÎN
and this argument is supported by simple numerical calcula-
tions that we present in Fig. 5. We expect that in the minimal
path c̄ also scales ascm i.e., as 1/ÎN, and thus the relation
C,ÎN follows. Let us notice that scaling ofL andC in the
C phase is analogous to the scaling in theL phase but with
the roles ofL andC interchanged. We do not know whether
this relation is accidental or indicates a deeper relationse.g.,
certain dualityd between these two phases.

As might be expected, the scaling ofL andC at the tran-
sition pointr =2.0 is different from that in each of the phases.
Figure 3 shows that in this case both quantities increase lin-
early with N.

Finally, we compare the efficiency of the simulated an-
nealing in each phase. Our datasFig. 6d show that in theC
phase SA is much more efficient and already with a rela-
tively fast cooling asnearlyd minimal path is found. In theL
phase corrections due to the nonzero cooling rate are much
more importantsour simulations show that these corrections
in the L phase decay approximately asc1/3d. For r =0 our
data extrapolated to the limit of zero cooling rate give for
N=100 the average length of a minimal path asL0=7.8,
which is in good agreement with other results quoted in the
literaturef15g. For comparison, we show also the results ob-
tained using theLIN-2-OPT algorithm f11g. This time simula-

FIG. 7. The average normalized lengthL /L0 as a function of
exponential cooling ratec, whereL0 is the extrapolated value ofL
at the zero cooling ratesN=200d. Simulations were made using
LIN-2-OPT moves. Let us notice thatL converges toL0 linearly in
c1/2. For the algorithm with exchange movessFig. 6d convergence is
slower and linear inc1/3.

FIG. 4. A link with a point inside circleA has its center inside
circle B with a twice smaller radius.

FIG. 5. The minimal distancecm from the center of a link to
s1/2,1/2d as a function of 1/ÎN. Links are made between a ran-
domly chosen pointsx1,y1d andN−1 other randomly chosen points.
Presented results are averages over 100 choices ofsx1,y1d.

FIG. 6. The average normalized lengthL /L0 as a function of
cooling ratec, whereL0 is the extrapolated value ofL at the zero
cooling ratesN=100d.
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tion was made forN=200 and an exponential cooling sched-
ule was usedTstd=T0s1−cdt, whose effectiveness was
already demonstratedf16g. Results of these simulations,
shown in Fig. 7, confirm the change of efficiency of SA at
the transition point of our model.

The main difficulty with finding a minimal path in the
TSP is due to the complexity of the cost function and more
specifically due to its many local minima. Some of these
minima, being quite far from the global minimum, might be
at the same time quite deep and the searching algorithm
might get stuck in one of them. The landscape of the cost
function in our problem is also very complex and has many
minima. However, the substantial increase in efficiency of
SA in the C phase indicates a certain change in this land-
scape. One possibility is that in theC phase local minima are
located mainly in the vicinity of the global minimum. As a
result, a solution found using SA, which is almost always
only a nearly optimal path, is a good approximation of the
optimal solution. In our opinion, such a transition for a

model that most likely is NP-complete for anyr is unusual
and it would be desirable to understand it better. Another
type of transition in the TSP appears in the time-dependent
version of this problemf17g.

In conclusion, we studied a version of the traveling sales-
man problem where the cost function includes both the
length of the path as well as its distance from the center. This
problem, depending on the control parameter, turns out to
have two phases with different kinds of solutions. As indi-
cated by a drastic change in the efficiency of the simulated
annealing method, a phase transition in this problem should
be accompanied by important changes in the complex land-
scape of the cost function. Further studies would be needed
to clarify more detailed properties of this problem.
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