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Traveling salesman problem with a center
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We study a traveling salesman problem where the path is optimized with a cost function that includes its
length L as well as a certain measu€® of its distance from the geometrical center of the graph. Using
simulated annealingSA) we show that such a problem has a transition point that separates two phases
differing in the scaling behavior df andC, in efficiency of SA, and in the shape of minimal paths.
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In the traveling salesman proble(@SP), which is per- course,r=0 corresponds to the original TBRJsing simu-
haps the most famous combinatorial optimization problem|ated annealing we show that upon increasinthe model
one has to find the shortest path that joins a given s& of undergoes a phase transition from thedominated phase
points. In addition to pure academic interest the TSP appeaismallr) to theC(-dominated phase(larger). In theL phase
naturally in some transportation applications or productionye find L ~ N2 and C~ N, while in theC phase a reverse
and testing of integrated circuif4]. This easy to formulate scaling holds withL ~N and C~NY2 Moreover, the mini-
problem is, however, very difficult to solve. Actually the TSP yg| paths in these two phases have a qualitatively different
is known to be NRnondeterministic polynomigtcomplete  shape. What is also interesting is the change of efficiency of
[2] and it is believed that there is no algorithm that can findga " The r-dependent optimization problem that we study
a solution in time increasing as a finite order polynomial in oes not seem to be easier than th® case, and we expect
N. Although advanced algorithms can find exact solutions o hat for anyr our problem is also NP—com'pIete Neverthe-

the TSP for quite large values M, these algorithms are ) i i
usually dedicated only to this particular task. Consequentlyless’ in theC phase SA has a much better efficiency than in

they are not suitable for more general versions of the TSFShethL pgasi at Ieaf?t \f{‘”th. rﬁtspbect t(l) Ilnddltng ne?]rly mmu};n;l
nor for some other numerically difficult optimization prob- P&NS. Such an erect mignt be related to a change or the

lems. It is thus desirable to develop approximate but mor&n€rgy landscape of the problem, but further studies would
versatile methods such as genetic programniBlg simu- e needed to verify such a claim.

lated annealingSA) [4], or extremal optimizatio5], and 1O dgfine our problem, I_et us consia%rpointg distributed '
for such a purpose the TSP appears to be an excellent testiHfg@ unit square of a Euclidean plane. Denoting the coordi-
ground. nates of thath point as(x;,y;), we have

Another NP-complete problem that is of considerable in-
terest is the so-called satisfiability problem where one exam- N
ines conditions needed to satisfy certain Boolean formulas L=\, =%, )%+ (¥, =~ Yi,)? 1)
[6]. Recently, it was shown that there is a phase transition in k=1

this class of problems that separates two regimes: easy and
hard to satisfy. It turns out that such problems are most dif-
ficult to examine right at the transition point and computa- 1 - 5
tional complexity decreases when one moves away from the C= 52 VoG X, ~ D2+ Y, — DA ()
transition poin{ 7]. A related phase transition was found in a =1
certain version of the TSP where distances between points
are randomly drawn integer numbediks, 2,...,k}. In such a  where we assume that in a given path, points appear in the
case the time needed to find the minimal solution using arderiy,i,,..., iy, i1 andiy.1=i;. Next, we introduce the cost
branch-and-bound algorithm dramatically increases whken function E=L+rC. We cannot provide an immediate appli-
exceeds a certain threshold va[#. Methods used to estab- cation of such a problem, but one can imagine that in some
lish these results very often originate from statistical me-transportation tasks staying during the tour closdaofar
chanics providing thus an interesting multidisciplinary from) the center might be of some importance. Such an ad-
bridge [9]. Although some other examples of connectionsditional condition might be particularly relevant in war areas
between statistical mechanics and computational complexitwhere staying near a military base is important for safety
were already examindd.0], further explorations of this sub- reasons. Another application might be a “just-in-time vehicle
ject would be very desirable. routing problem,” in which truck drivers might be called to

In the present paper we examine a certain version of théhe center depot at intermediate times in order to get further
TSP where one requires the minimization BEL+rC, goods that have to be delivered to the customers. It is easy to
wherelL is the total length of a patlC is the sum of dis- realize that minimization ot usually does not minimiz€
tances of middle points of links from the geometrical centerand competition of these two terms might lead to some in-
of the graph, and is a control parameter of the mod@f  teresting effects.
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T A visual indication of a qualitative change aroumd

o _ ~2.0 is shown in Fig. 2. For large (C-dominated phage
FIG. 1. The length. of the minimal path as a function offor  paths that minimiz& have large length but many intersec-
N=100. The left inset shows the square root of its variang@s a  tjons around the centd./2,1/2 yield a small value ofC.
function of r. The right inset shows the total distance from the For smallr (L-dominated phagéypical minimal paths have
centerC as a function of. a much different shape. They have only few intersections and

To find th that minimizeE tandard si are more or less uniformly distributed in a unit square.
lat g n alpa i r? 'm|n|n;|ze we use af; an t‘.”“ SIMU= " That in our problem there are two phases separated by a
ated anneaiing technique. For a given configuration, We prog, qjtion point around~2.0 is also seen in Fig. 3 which

d_uce a trial configuration by exchangin_g randomly the.pos"presents thé\ dependence of andC. These results show
tions of two points. Such a move is accepted with Qhat in the L phase (r=1.9 L~NY2 and C~N. Conse-

probability m_|r(1,e =) \_NhgreéE IS the energy dn‘fer_er}ce quently, the cost functioft is dominated by the distanca

between a trial and the initial configuration, ahds a ficti- | o\ "otice that the scaliig~ N2 was already proven for

lous emperalure, DuTng Smulatons. e \eThersbie the riginal TSRr=0) [13] s for he second el

wherec is the coolin ra{e and the unit of gt]ime is d_efined as_. N), there is a simple argument that justifies it. Indeed,

the attempt to makBngoves For a small cooling ratesuch s[ncg in thel__ phase the minimal path is relatively uniformly

a method finds a path of a I(.)(/and for smallN perhaps even dls_tnbuted in the unit square one can assume .that central
points of links are also almost uniformly distributed. It

tmhidlglv\/;f thllf{ﬁeolghs-? Szﬁg; g??;éhﬁu%gﬁigerﬁe%gdur means that there is a positiv@ndN independent in the limit
q ' "N—o0) average distance of the central point frgii2,1/2

did additional runs using the so-calleah-2-oPT moves that .
cut a configuration in two pieces, turn the direction of oneand thenC~N easily follows[14]. 12 .
piece around, and reconnédtl]. Such moves are known to In the C phase we find. ~N andC~ N™“ SUCh r_eIanns
be more effective than exchanges of two poifit&]. Both can be d(_educ_ed from the structure OT a typical minimal p‘.ath
methods, however, yield essentially the same behavior of olff> seen in F'g' 2. !n the phase points that are approxi-
model with respect to, e.g., the location of the transitionr.nately opposite with respect ;@/2_,1/ 2 are pairwise
point or N dependence of and C. Unless specified other- linked. It means that there is a f|n|(N—|ndepende0tle£gth
wise, the results described below are obtained with the use & such a link and thuk ~N follows. The relationrC~ VN is
the exchange algorithm. more subtle and we can justify it only approximately. In the
In Fig. 1 we show the length of a minimal path as a following we argue that for a minimal path the typical dis-
function of r averaged over 1000 distributions df=100  tancec of the center of a link td1/2,1/2 scales as 1N
points. One can see thatis a slowly increasing function of from which the relatiorC~ N easily follows. To show that
r except around =2.0 where the increase is more abrupt.c~1/VN let us consider, e.g., a poif;,y;) and ask what
Around the same value afthere is a maximum of the vari- is the minimumc,, of distances of the center of a link
ance ofL and an abrupt change @. These results suggest between(x;,y;) and any of the remainindN—1 points.
that a certain phase transition takes place araun2l. It means that we have to find the minimum of
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FIG. 4. Alink with a point inside circléA has its center inside
circle B with a twice smaller radius.

5V (% +% - 1)%+(y,+y;—1)2 wherei=2,3,...,N. Let us no-
tice that in a(two-dimensional unit squareN-1 points set
the characteristic distance between points ad\L Thus one
can expect that in a circle of radius N that is opposite
[with respect to(1/2,1/2] to the point(x;,y,) there is ap-
proximately one of thesd -1 points(see Fig. 4. A link with
such a point has a center that is inside a circle aroun
(1/2,1/2 and has a twice smaller radidsut still it is of the
order of 1AN). Consequently, the smallest distarggof a
center of link to the poinf1/2,1/2 should scale as 4N
and this argument is supported by simple numerical calcul
tions that we present in Fig. 5. We expect that in the minim
pathc also scales as,, i.e., as 14N, and thus the relation
C~ VN follows. Let us notice that scaling &f andC in the
C phase is analogous to the scaling in thphase but with
the roles ofL andC interchanged. We do not know whether
this relation is accidental or indicates a deeper relafog.,
certain duality between these two phases.
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FIG. 5. The minimal distance, from the center of a link to
(1/2,1/2 as a function of 1{N. Links are made between a ran-
domly chosen pointxy,y;) andN-1 other randomly chosen points.
Presented results are averages over 100 choices of;).
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FIG. 6. The average normalized lendtliLy as a function of
cooling ratec, wherel is the extrapolated value &f at the zero
cooling rate(N=100.

As might be expected, the scaling lofandC at the tran-
sition pointr=2.0 is different from that in each of the phases.
Figure 3 shows that in this case both quantities increase lin-
early with N.

Finally, we compare the efficiency of the simulated an-

&ealing in each phase. Our ddfég. 6) show that in theC

phase SA is much more efficient and already with a rela-

tively fast cooling a(nearly) minimal path is found. In thé&

phase corrections due to the nonzero cooling rate are much

more importaniour simulations show that these corrections
the L phase decay approximately a¥®. For r=0 our

n
aa(data extrapolated to the limit of zero cooling rate give for

N=100 the average length of a minimal path las=7.8,

which is in good agreement with other results quoted in the

literature[15]. For comparison, we show also the results ob-
tained using theIN-2-0PT algorithm[11]. This time simula-
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FIG. 7. The average normalized lendtliL, as a function of
exponential cooling rate, wherel, is the extrapolated value &f
at the zero cooling ratéN=200. Simulations were made using
LIN-2-OPT moves. Let us notice thdt converges td_q linearly in
c2, For the algorithm with exchange movésg. 6) convergence is
slower and linear irc'/3,
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tion was made foN=200 and an exponential cooling sched- model that most likely is NP-complete for amyis unusual
ule was usedT(t)=Ty(1-c)!, whose effectiveness was and it would be desirable to understand it better. Another
already demonstratel16]. Results of these simulations, type of transition in the TSP appears in the time-dependent
shown in Fig. 7, confirm the change of efficiency of SA atversion of this problen17].
the transition point of our model. In conclusion, we studied a version of the traveling sales-
The main difficulty with finding a minimal path in the man problem where the cost function includes both the
TSP is due to the complexity of the cost function and moreength of the path as well as its distance from the center. This
specifically due to its many local minima. Some of theseproplem, depending on the control parameter, turns out to
minima, being quite far from the global minimum, might be have two phases with different kinds of solutions. As indi-
at the same time quite deep and the searching algorithated by a drastic change in the efficiency of the simulated
might get stuck in one of them. The landscape of the cosjnnealing method, a phase transition in this problem should
function in our problem is also very complex and has manyhe accompanied by important changes in the complex land-
minima. However, the substantial increase in efficiency Ofscape of the cost function. Further studies would be needed

SA in the C phase indicates a certain change in this land+g clarify more detailed properties of this problem.
scape. One possibility is that in tiizphase local minima are

located mainly in the vicinity of the global minimum. As a  Research Grant No. 1 PO3B 014 27 from KBN is grate-
result, a solution found using SA, which is almost alwaysfully acknowledged. Numerical calculations were partially
only a nearly optimal path, is a good approximation of theperformed on the Open Mosix Cluster built and administered
optimal solution. In our opinion, such a transition for a by Dr. L. Dgbski.

[1] D. S. Johnson, ifProcedings of the 17th Colloquium on Au- Toroczkai, M. A. Novotny, and P. A. Rikvoldbid. 84, 1351
tomata, Languages and Programmjregited by M. S. Pater- (2000.
son, Lecture Notes in Computer Sciendél. 443 (Springer-  [11] S. Lin and B. W. Kernighan, Oper. Re&1, 498 (1973.
Verlag, Berlin, 1990. [12] P. F. Stadler and W. Schnabl, Phys. Lett.181, 337 (1992.
[2] M. Garey and D. S. JohnsoiGomputers and Intractability [13] J. Beardwood, J. H. Halton, and J. M. Hammersley, Proc.
(Freeman, San Francisco, 1979 Cambridge Philos. Socs5, 299 (1959.
[3] J. R. Koza,Genetic ProgrammingMIT Press, Cambridge, [14] Assuming that distribution of the central points of links is uni-
MA, 1992). form in the unit square we obtain that their average distance
[4] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Scienegq, from (1/2,1/2 equals c=[3[gy(x-0.5%+(y—0.5%dx dy
671(1983. ~0.384. Forr=0 andN=100 our numerical calculations give
[5] S. Boettcher and A. Percus, Artif. Intell19, 275 (2000. C~37.3 which is in a relatively good agreement with the ap-
[6] B. Hayes, Am. Sci.85, 108(1996. proximation C=cN. (As might be expected, it is slightly
[7] T. Hogg, B. A. Huberman, and C. P. Williams, Artif. InteB1, smaller)
1(1996. [15] J. Lee and M. Y. Choi, Phys. Rev. BEO, R651(1994).
[8] W. Zhang and R. E. Korf, Artif. Intell.81, 223 (1996. [16] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G.
[9] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Dueck, J. Comput. Physl59, 139 (2000.
Troyansky, NaturéLondon) 400, 133(1999. [17] J. Bentner, G. Bauer, G. M. Obermair, |. Morgenstern, and J.
[10] S. Mertens, Phys. Rev. LetB4, 1347(2000; G. Korniss, Z. Schneider, Phys. Rev. B4, 036701(2002).

067701-4



